If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+112x-48=0
a = 20; b = 112; c = -48;
Δ = b2-4ac
Δ = 1122-4·20·(-48)
Δ = 16384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16384}=128$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(112)-128}{2*20}=\frac{-240}{40} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(112)+128}{2*20}=\frac{16}{40} =2/5 $
| 34.99+19x=41 | | 5-2(a+1)+3a=13 | | x^=24 | | 3(2x-5)=2(x-4( | | x•0.08=1 | | 1x+8=104 | | 7x+8+8x-1=10x+5 | | 1/2(8+12)+y=-18 | | -4.2r=26.2 | | 1/2(8y+12)+y=-18 | | 2x+32+30=180 | | 7x=183 | | 4n-4=n+5 | | -7x-9x=-40+8 | | 7x+12=3x+16 | | n4− -15=18 | | 1+3b=7 | | 3(9b-6)=-17-4b | | -8=-2(5x+10) | | 10y-37+4y+7=180 | | 14x=-7+4 | | 9/8=-3w | | 0=x2+4x-480 | | -13-8(3x+5)=-7x+13 | | 6x+12=11x-6-2x | | 6x+12=11x-6-2× | | (4x+7)+(4x+6)+(4x)=(4x)+(4x)+(5x+7) | | w-16=20w= | | 2x+5=3×+2 | | 4|2x-2|=40 | | 6(X-6)+6=8x+12 | | 4-3(1+5r)=-18 |